Home > Engineering > Electrical Engineering > Volume-2 > Issue-4 > Performance Analysis of Higher Order Cascaded H-Bridge Multilevel Inverters

Performance Analysis of Higher Order Cascaded H-Bridge Multilevel Inverters

Call for Papers

Volume-8 | Issue-6

Last date : 27-Dec-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Performance Analysis of Higher Order Cascaded H-Bridge Multilevel Inverters


Ms. Komal Shende | Dr. HariKumar Naidu | Prof. Vaishali Pawade

https://doi.org/10.31142/ijtsrd14456



Ms. Komal Shende | Dr. HariKumar Naidu | Prof. Vaishali Pawade "Performance Analysis of Higher Order Cascaded H-Bridge Multilevel Inverters" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-4, June 2018, pp.1850-1856, URL: https://www.ijtsrd.com/papers/ijtsrd14456.pdf

Cascade H-Bridge Multilevel Inverters are very popular and have many applications in electric utilities and for industrial drives. When these inverters are used for industrial drives directly, the Total Harmonic Distortion (THD) in the output voltage of inverters is very significant as the performance of drive depends very much on the quality of voltage applied to drive. A Multilevel Inverter in high power ratings improves the performance of the system by reducing Harmonics. This paper presents the simulation of single phase nine level and eleven level inverters. Detailed analysis of these inverters has been carried out and compared with different loads. PWM control strategy is applied to the switches at appropriate conducting angles with suitable delays. These different level inverters are realized by cascade H-Bridge in MATLAB/SIMULINK. The inverters with a large number of steps can generate high quality voltage waveforms. The THD depends on the switching angles for different units of Multilevel Inverters.

Cascaded H-bridge inverter, Pulse Width Modulation (PWM), Total Harmonic Distortion (THD)


IJTSRD14456
Volume-2 | Issue-4, June 2018
1850-1856
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin